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Fig. 1. Given a single training motion sequence of skeleton with arbitrary topology, our method learns to synthesize novel motion sequences.

We present GANimator, a generative model that learns to synthesize novel
motions from a single, short motion sequence. GANimator generates motions
that resemble the core elements of the original motion, while simultaneously
synthesizing novel and diverse movements. Existing data-driven techniques
for motion synthesis require a large motion dataset which contains the de-
sired and specific skeletal structure. By contrast, GANimator only requires
training on a single motion sequence, enabling novel motion synthesis for a
variety of skeletal structures e.g., bipeds, quadropeds, hexapeds, and more.
Our framework contains a series of generative and adversarial neural net-
works, each responsible for generating motions in a specific frame rate. The
framework progressively learns to synthesize motion from random noise,
enabling hierarchical control over the generated motion content across vary-
ing levels of detail. We show a number of applications, including crowd
simulation, key-frame editing, style transfer, and interactive control, which
all learn from a single input sequence. Code and data for this paper are at
https://peizhuoli.github.io/ganimator.
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1 INTRODUCTION

Generating realistic and diverse human motion is a long-standing
objective in computer graphics. Motion modeling and synthesis
commonly uses a probabilistic model to capture limited local vari-
ations [Li et al. 2002] or utilizes a large motion dataset obtained
by motion capture (mocap) [Holden et al. 2016]. Capturing data
with a mocap system is costly both during stage-setting and in
post-process (e.g., involving manual data clean-up). Motion datasets
are often limited, i.e., they lack the desired skeletal structure, body
proportions, or styles. Therefore, utilizing motion datasets often
requires non-trivial processing such as retargeting, which may po-
tentially degrade or introduce errors in the original captured motion.
Moreover, there are no extensive datasets which contain imaginary
creatures or non-standard animals (such as the hexapedal crab in
Figure 1), which limits existing data-driven techniques.

In this work, we develop a framework that is capable of generating
diverse and realistic motions using only a single training sequence.
Our strategy greatly simplifies the data collection process while still
allowing the framework to create realistic variations and faithfully
capture the details of the individual motion sequence. Inspired by
the SinGAN model for image synthesis [Shaham et al. 2019], our key
idea is to leverage the information within a single motion sequence
in order to exploit the rich data over multiple temporal and spatial
scales. The generation process is divided into several levels, simi-
lar to progressive training schemes for images [Karras et al. 2018;
Shaham et al. 2019].
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Our framework is an effective tool for generating novel motion
which is not exactly present in the single given training sequence.
GANimator can synthesize long, diverse, and high-quality motion
sequences using only a short motion sequence as input. We show
that for various types of motions and characters, we generate se-
quences that still resemble the core elements of the original motion,
while simultaneously synthesizing novel and diverse movements.
It should be noted that the synthesized motion is not copied verba-
tim from the original sequence. Namely, patches from the original
motion do not appear in the synthesized motion.

We demonstrate the utility of the GANimator framework to gen-
erate both conditional and unconditional motion sequences that are
reminiscent of the input motion. GANimator can unconditionally
(i.e., driven by noise) generate motions for simulating crowds and
motion editing/mixing. In addition, GANimator is able to produce
controllable motion sequences, which are conditioned on a user-
given input (e.g., trajectory position). We are able to inject global
position and rotation of the root joint as an input for interactively
controlling the trajectory of the synthesized motion. GANimator is
also able to perform key-frame editing, which generates high-quality
interpolations between user-modified poses. Lastly, GANimator en-
ables motion style transfer — synthesizing the style of the input
motion onto a different motion.

Our system relies on skeleton-aware operators [Aberman et al.
2020a] as a backbone for our neural motion synthesis framework.
The skeleton-aware layers provides the platform for applying convo-
lutions over a fixed skeleton topology. Since our network trains on
a single motion sequence, we automatically adjust the operators to
adhere to the structure of the input skeleton. Therefore, our system
is able to train on a wide variety of skeletal structures, e.g., bipeds,
quadropeds, hexapeds, and more. Further, for ground-inhabiting
creatures, we incorporate a self-supervised foot contact label. This
ensures proper placement of the feet on the ground plane and avoids
notorious foot sliding artifacts. We demonstrate the effectiveness of
GANimator in handling a wide variety of skeletal structures and mo-
tions, and its applicability in various motion editing and synthesis
tasks.

Achieving desirable results in this constrained scenario is highly
challenging, with existing techniques commonly producing undesir-
able results that fall into one of two extremes. In the first extreme,
generated results span the breadth of poses contained in the origi-
nal motion sequence, but are jittery and incoherent. In the second
extreme, results are smooth, but lack variety and coverage of the
motion elements contained in the original sequence. Our proposed
technique strikes a favorable balance between these extremes, syn-
thesizing high-quality, novel, and varied motion sequences. Our
framework produces desirable motion sequences that contain all the
original motion elements, while still achieving diverse and smooth
motion sequences.

2 RELATED WORK

We review various relevant works on motion generation, focusing
on human and other character animation. For an in-depth survey of
this extensive body of literature we refer the readers to the surveys
in [Geijtenbeek et al. 2011; Mourot et al. 2021].
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Statistical modeling of visual and motion data. Representing and
generating complex visual objects and phenomena of stochastic
nature, such as stone and wood textures or breathing and walking
cycles with natural variations, is one of the fundamental tasks in
computer graphics. In one of the pioneer works in this area, Per-
lin [1985] introduced the famous Perlin noise function that can
be used for image synthesis with variations. This technique was
later applied to procedural animation synthesis [Perlin and Gold-
berg 1996] to achieve random variability. Instead of using additive
noise, statistical approaches [Bowden 2000; Brand and Hertzmann
2000; Chai and Hodgins 2007; Pullen and Bregler 2000] propose
using probabilistic models such as kernel-based distribution and
hidden Markov models, enabling synthesis with variations via direct
sampling of the model. To capture both local and global structure,
MotionTexture [Li et al. 2002] clusters a large training dataset into
textons, a linear dynamics model capable of capturing local varia-
tion, and models the transition probability between textons. Though
the goal resembles ours, this data-hungry statistical model does not
fit in our single-motion setting. We perform an in-depth comparison
to MotionTexture regarding the ability to model both global and lo-
cal variations when data is limited in Sec. 4.2. A similar idea of using
two-level statistical models is employed in multiple works [Lee et al.
2002; Tanco and Hilton 2000] for novel motion synthesis. Other sta-
tistical models based on Gaussian processes learn a compact latent
space [Grochow et al. 2004; Levine et al. 2012; Wang et al. 2007]
or facilitate an interactive authoring process [Ikemoto et al. 2009]
from a small set of examples for multiple applications, including
inverse kinematics, motion editing and task-guided character con-
trol. Lau et al. [2009] use a similar Bayesian approach to model the
natural variation in human motion from several examples. However,
probabilistic approaches tend to capture limited variations in local
frames and require a large dataset for a better understanding of
global structure variations.

Interpolation and blending of examples. Another approach for
example-based motion generation is explicit blending and concate-
nation of existing examples. Early works [Mizuguchi et al. 2001;
Park et al. 2002; Rose et al. 1998, 1996; Wiley and Hahn 1997]
use various interpolation and warping techniques for this purpose.
Matching-based works [Arikan and Forsyth 2002; Kovar and Gle-
icher 2004; Pullen and Bregler 2002] generate motion by matching
user-specified constraints in the existing dataset and interpolating
the retrieved clips. Kovar et al. [2002] explicitly model the structure
of a corpus of motion capture data using an automatically con-
structed directed graph (the motion graph). This approach enables
flexible and controllable motion generation and is widely used in in-
teractive applications like computer games. Min et al. [2012] propose
a mixture of statistical and graph-based models to decouple varia-
tions in the global composition of motions or actions, and the local
movement variations. One significant constraint of blending-based
methods is that the diversity of the generated results is limited to
the dataset, since it is composed of interpolations and combinations
of the dataset. Further works [Heck and Gleicher 2007; Safonova
and Hodgins 2007; Zhao et al. 2009] focus on the efficiency and
robustness of the algorithm but are still inherently limited in the va-
riety of the generated results. Motion matching [Biittner and Clavet



2015] directly finds the best match in the mocap dataset given the
user-provided constraints, bypassing the construction of a graph to
achieve better realism. However, it generally requires task-specific
tuning and is unable to generate novel motion that are unseen in
the dataset.

Physics-based motion synthesis. Another loosely related field is
physically-based motion generation, where the generation pro-
cess runs a controller in a physics simulator, unlike kinematics ap-
proaches that directly deal with joints’ transformations. Agrawal
et al. [2013] optimize a procedural controller given a motion ex-
ample to achieve physical plausibility while ensuring diversity in
generated results. However, such controllers are hand-crafted for
specific tasks, such as jumping and walking, and are thus diffi-
cult to generalize to different motion data. Results in [Wei et al.
2011; Ye and Liu 2010] show that combining physical constraints
and statistical priors helps generate physically realistic animations
and reactions to external forces, but the richness of motion is still
restricted to the learned prior. With the evolution of deep reinforce-
ment learning, control policies on different bodies including biped
locomotion [Heess et al. 2017; Peng et al. 2017] and quadurpeds [Luo
et al. 2020] can be learned from scratch without reference. It is also
possible to achieve high quality motion by learning from reference
animation [Peng et al. 2018]. Lee et al. [2021] propose to learn a
parameterized family of control policies from a single clip of a sin-
gle movement, e.g., jumping, kicking, backflipping, and are able to
generate novel motions for a different environment, target task, and
character parameterization. As in other works, the learned policy is
limited to several predefined tasks.

Neural motion generation. Taylor and Hinton [2009] made initial
attempts to model motion style with neural networks by restricted
Boltzmann machines. Holden et al. [2016; 2015] applied convolu-
tional neural networks (CNN) to motion data for learning a mo-
tion manifold and motion editing. Concurrently, Fragkiadaki et al.
[2015] chose to use recurrent neural networks (RNN) for motion
modeling. RNN based works also succeed in short-term motion
prediction [Fragkiadaki et al. 2015; Pavllo et al. 2018], interactive
motion generation [Lee et al. 2018] and music-driven motion syn-
thesis [Aristidou et al. 2021]. Zhou et al. [2018] tackle the problem of
error accumulation in long-term random generation by alternating
the network’s output and ground truth as the input of RNN during
training. This method, called acRNN, is able to generate long and
stable motion similar to the training set. However, like many other
deep learning based methods, it struggles when only a short training
sequence is provided, whereas we are able to address the limited
data problem. We compare our method to acRNN in Sec. 4.2. Holden
et al. [2017] propose phase-functioned neural networks (PFNN) for
locomotion generation and introduce phase to neural networks.
Similar ideas are used in quadruped motion generation by Zhang
et al. [2018]. Starke et al. [2020] extend phase to local joints to cope
with more complex motion generation. Henter et al. [2020] propose
another generative model for motion based on normalizing flow.
Neural networks succeed in a variety of motion generation tasks:
motion retargeting [Aberman et al. 2020a, 2019; Villegas et al. 2018],
motion style transfer [Aberman et al. 2020b; Mason et al. 2022],
key-frame based motion generation [Harvey et al. 2020], motion
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matching [Holden et al. 2020] and animation layering [Starke et al.
2021]. It is worth noting that the success of deep learning methods
hinges upon large and comprehensive mocap datasets. However,
acquiring a dataset involves costly capturing steps and nontrivial
post-processing, as discussed in Section 1. In contrast, our method
achieves comparable results by learning from a single input motion
sequence.

3 METHOD

We propose a generative model that can learn from a single motion
sequence. Our approach is inspired by recent works in the image do-
main that use progressive generation [Karras et al. 2018] and works
that propose to train deep networks on a single example [Shaham
et al. 2019; Shocher et al. 2019]. We next describe the main building
blocks of our hierarchical framework, motion representation, and
the training procedure.

3.1 Motion representation

We represent a motion sequence by a temporal set of T poses that
consists of root joint displacements O € R7*3 and joint rotations
R € RTYQ, where J is the number of joints and Q is the number of
rotation features. The rotations are defined in the coordinate frame
of their parent in the kinematic chain, and represented by the 6D
rotation features (Q = 6) proposed by Zhou et al. [2019], which
yields the best result among other representations for our task (see
ablation study in Section 4.4).

To mitigate common foot sliding artifacts, we incorporate foot
contact labels in our representation. In particular, we concatenate to
the feature axis C - T binary values L € {0, I}TXC, which correspond
to the contact labels of the foot joints, ¥, of the specific creature.
For example, for humanoids, we use ¥ = {left heel, left toe, right
heel, right toe}. For each joint j € ¥ and frame t € {1,...,T}, the
tj-th label is calculated via

LY = 1[||FKs([R, O]) ||2< €],

where ||[FKs([R, O])/||; denotes the magnitude of the velocity of
joint j in frame ¢ retrieved by a forward kinematics (FK) operator.
FK applies the rotation and root joint displacements on the skeleton
S, and 1[V] is an indicator function that returns 1 if V is true and 0
otherwise.

To simplify the notation, we denote the metric space of the con-
catenated features by Mt = RIXUQ+C+3) 1 addition, we denote
the input motion features by T = [R, O,L] € Mr, and its correpond-
ing downsampled versions by T; € Mr;.

3.2 Progressive motion synthesis architecture

Our motion generation framework is illustrated in Fig 2. It consists
of S coarse-to-fine generative adversarial networks (GANs) [Good-
fellow et al. 2014], each of which is responsible to generate motion
sequences with a specific number of frames {T,-}le. We denote the
generators and discriminators by {Gi}is=1 and {Di}iszl, respectively.

The first level is purely generative, namely, G; maps a random
noise z; € My, into a coarse motion sequence

Q1 = Gi1(z1). (1)
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Fig. 2. Our progressive motion synthesis architecture. Starting with random noise that synthesize a coarse motion sequence through a generative network,
our framework progressively upsamples the motion until it reaches to the finest temporal resolution. Each level receives the output of the previous level
(except for the first level) and a random noise as output an upsampled version of the input sequence. We use adversarial training, such that each generated

result is fed into a discriminator at a corresponding level.

where Q1 € My;. Then, the generators in the finer levels G; (2 <
i < S) progressively upsample Q; via

Qi = Gi(Qi-1, i), @
where in each level the sequence is upsampled by a fixed scaling
factor F > 1. The process is repeated until the finest output sequence
Qs € My is generated by Gs.

Note that z; € My, has an ii.d normal distribution ~ N (0, o;)
along the temporal axis while being shared along the channel axis,
and we found that o; is highly correlated with the magnitude of the
high-frequency details generated by G;, thus, we select

1
o = EHT Ti—1 — Till5, (3
i

where Z; = T;(QJ + C + 3) is the number of entries in T;, and T
is a linear upsampler with a scaling factor F > 1. In all of our
experiments we select F = 4/3 and S = 7.

3.2.1 Network components.

Generator. Our generator G; contains a fully convolutional neu-
ral network g;(-) that has a few skeleton-aware convolution lay-
ers [Aberman et al. 2020a] followed by non-linear layers (see Ap-
pendix A). Since the main role of the network is to add missing
high-frequency details, we use a residual structure [He et al. 2016],
hence for 2 < i < S, we get

Gi(Qi-1,zi) = gi(T Qi—1 + zi)+ T Qi-1. 4

Discriminator. While discriminators in classic GAN architectures
output a single scalar indicating whether the input is classified as
“real” or “fake”, such a structure in the case of a single sequence
in the training data leads to mode collapse, since our generator
trivially overfits the sequence. In order to prevent overfitting we
limit the receptive field of the discriminator by employing a Patch-
GAN [Isola et al. 2017; Li and Wand 2016] classifier, which calculates
a confidence value to each input patch. The final output of our
discriminator is the average value of all the per-patch confidence
values, predicted by the network.

Skeleton-aware operators. We employ skeleton-aware convolu-
tions [Aberman et al. 2020a] as a fundamental building block in
our framework. Skeleton-aware operators require a fixed skeleton
topology that is defined by a set of joints (vertices) and an adjacency
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list (edges). Since our network operates on a single sequence we
adapt the topology to adhere the input sequence. This enables op-
eration on any skeleton topology, and does not require retargeting
the input motion to a specific skeletal structure. To incorporate the
foot contact labels into the skeleton-aware representation, we treat
each label as a virtual joint connected to its corresponding joint
rotations vertex. In addition, due to the high correlation between
end-effectors and global positions, we add a connection between the
contact labels vertices to the vertex of the global displacements O,
where we treat the latter as another virtual joint that is connected
to the neighbors of the root joint in the kinematic chain.

3.2.2  Loss functions.
Adversarial Loss. We train level i with the WGAN-GP [2017] loss:
Laav = Eq;~p,, [Di(Qi)] — Di(T:) ®)
+  AgpEg

oury | (170:@01-1)’|.

where Py, is defined as the distributions of our generated samples
in the ith level, V is the gradient operator and Py, is the distribution
of the linear interpolations Qi = AQ; + (1 — )T; with A as a uni-
formly distributed variable in [0, 1]. The gradient penalty term in (6)
enforces Lipschitz continuity so the Wasserstein distance between
generated and training distribution can be well approximated [Gul-
rajani et al. 2017].

Reconstruction Loss. To ensure that the network generates vari-
ations of all the different temporal patches, and does not collapse
to generation of a specific subset of movements, we require the
network to reconstruct the input motion from a set of pre-defined
noise signals {z} }le, namely, G;(T T;-1, z;) should approximate the
single training example T; at level i. To encourage the system to do
so, we define a reconstruction loss

Lree = IGi(T Ti-1,77) = Till1. (6)
Note that the noise models the variation of generated results, but
during reconstruction, we do not expect any variation. To this end,
we fix z] as a pre-generated noise for the first level and set z; = 0

1
for the other levels.
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Fig. 3. Generator structure. Our residual generator receives the sum of a
noise vector and the upsampled result from previous level (in the first level
it receives only noise). It predicts the missing high-frequency details, which
is added to the input animation via skip connections.

Contact Consistency Loss. As accurate foot contact is one of the
major factors of motion quality, we predict the foot contact labels
in our framework and use an IK post-process to ensure the contact.
Since the joint contact labels L are integrated into our motion rep-
resentation M, the skeleton-aware networks can directly operate
on M and learn to predict the contact label as part of the motion.

We noticed that the implicit learning of contact labels can cause ar-
tifacts in the transition between activated and non-activated contact
labels. Thus, we propose a new loss that encourages a consistency
between contact label and feet velocity. We require that in every
frame either the contact label or the foot velocity will be minimized,
via

T
Leon = == 3 S [FKs(R, 0)17 2511, @)

T|7-—| jeF t=1
where s(x) = 1/[1+exp(5—10x)] is the transformed sigmoid function.
We demonstrate the effectiveness of this loss in the ablation study
(Section 4.4).

3.2.3 Training. Our full loss used for training summarizes as:
L = AaavLadv + Arec Lrec + AconLcon- ®)

Although each level can be trained separately, the generated sam-
ples of generators in the low levels may be over-blurred due to low
temporal resolution and the smoothing effect applied by convolu-
tional kernel. To improve the robustness and quality of the results,
we combine every 2 consecutive levels as a block and train the
framework block by block. A similar technique is also used by Hinz
et al. [2021].

For a detailed description of the layers in each component and
the specific values of the hyper-parameters, we refer the reader to
Appendix A.

4 EXPERIMENTS AND EVALUATION

We evaluate our results, compare them to other motion generation
techniques and demonstrate the effectiveness of various components
in our framework through an ablation study. Please refer to the
supplementary video for the qualitative evaluation.

4.1 Implementation details

Our GANimator framework is implemented in PyTorch [Paszke
et al. 2019], and the experiments are performed on NVIDIA GeForce
RTX 2080 Ti GPU. We optimize the parameters of our network
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with the loss term in Eq. (8) using the Adam optimizer [Kingma
and Ba 2014]. We used different training sequences, whose length
ranges from 140 frames to 800 frames at 30fps. It contains both artist-
created animation and motion capture data from Mixamo [2021] and
Truebones [2022]. The training time is proportional to the training
sequence length, e.g., it takes about 4 hours to train our network
on a human animation sequence with around 600 frames (15,000
iterations per level).

4.2 Novel motion synthesis

We demonstrate the ability of motion sequence extrapolation in
Fig. 4 and compare our method to the recent acRNN work [Zhou
et al. 2018] and the classical statistical model MotionTexture [Li
et al. 2002]. We quantitatively compare these methods with metrics
dedicated to a single training example in Section 4.3.

Since our network is fully convolutional, we can generate high-
quality motion sequences of arbitrary length given a single training
example. As a simple application, we can easily generate a crowd
animation, as shown in Fig. 5 and the accompanying video.

When only a single training sequence is provided, acRNN can
only generate a limited number of frames before converging to a
constant pose, because the lack of data leads to an overfitted model
that is not robust to perturbation and error accumulation in RNNs,
while our fully convolutional framework does not suffer from this
issue.

MotionTexture [Li et al. 2002] automatically clusters the patches
of the training dataset into several textons and models the tran-
sition probability between textons, where each texton represents
the variation of a small segment of similar motions. MotionTexture
relies on similar but not identical patches in the dataset for model-
ing local variations. It constructs the global transition probability
between textons based on the frequencies of consecutive relation-
ships of corresponding patches in the dataset. However, when only
a single training sequence is provided, we need to manually divide
the sequence into patches and specify the transition between tex-
tons. When splitting the training sequences into several textons
and manually permuting them to create global structure variations,
the transitions between textons can be unnatural (see Fig. 4). It is
possible to learn a single texton for the whole training sequence
to achieve better quality, but the model creates almost zero local
variations due to limited data.

4.3 Evaluation

We discuss quantitative metrics for novel motion synthesis from
a single training sequence and compare our method and existing
motion generation techniques.

Coverage. An important quantitative measurement for the quality
of our model is the coverage of the training example. Since there is
only one training example, we measure the coverage on all possible
temporal windows W(T, L) = {Ti sl }{f{hl of a given length
L, where T?*/ denotes the sequence of frames i to j of the training
example T, and L7 is the total length of T. Given a generated result
Q, we label a temporal window T,, € W(T, L) as covered if its
distance measure to the nearest neighbor in Q is smaller than an

empirically chosen threshold €. The coverage of animation Q on T
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acRNN [20138]

Fig. 4. We train our framework, MotionTexture [2002] and acRNN [2018] on the Gangnam style dancing sequence with 371 frames and use them to synthesize
a new sequence with 600 frames. The magnitude of velocity of the right hand is visualized with a heatmap (white - low, green - average, red - high). It can be
seen that our method generates global structure variation, the poses and transitions look natural (see supplementary video) and visually similar to the training
sequence. For MotionTexture [2002], we manually pick a path between all the trained textons to generate results with similar structure. However, it can be
seen that such a process result in unnatural transitions visualized by the large hand velocity and bad foot contact. The result of acRNN [2018] converges to a
static pose very quickly due to insufficient data and thus the velocity of the hand gradually vanishes.

Fig. 5. Crowd animation. Our framework trained on a single crab dancing
sequence can synthesize various novel motions that can be used to simulate
crowd and augment data for various purposes.

is defined as

Cov(Q,T) = !

m Ty E’%(T,Lc)
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T[NN(Tw, Q) <€]. (9)

NN(Q1, Q2) denotes the distance of the nearest neighbor of the
animation sequence Q; in Q. It is crucial to use an appropriate
distance measure here. In our setting, we choose the Frobenius norm
on the local joint rotation matrices:

1
NN(Q1,Q3) = — i
(Q1.Q2) L Qwerqrbl&zll)

where L is the length of Q1. We use joint rotations and not positions
since our model creates local variations so that location deviations
accumulate along the kinematics chain, which would cause location-
based high distance measures on visually similar patches.

We choose L, = 30, capturing local patch length of 1 second.
Similarly, the coverage of a model G(-) on T is defined by

Cov(G,T) = E,Cov(G(2), T). (11)

Q1 - Qull%, (10)

Global diversity. To quantitatively measure the global structure
diversity against a single training example, we propose to measure
the distance between patched nearest neighbors (PNN). The idea is
to divide the generated animation into several segments, where each
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Fig. 6. Patched Nearest Neighbor metric. The generated animation (top
row) is divided into several segments, where the length of each segment is
at least Tinin. Then each segment is assigned to its nearest neighbor in the
training animation (bottom row) as visualised by the color bars.

segment is no shorter than a threshold Ty, and find a segmenta-
tion that minimizes the average per-frame nearest neighbor cost as
illustrated in Figure 6. For each frame i in the generated animation
Q we match it with frame J; in the training animation T, such that
between every neighboring points in the set of discontinuous points
{i|l; # li—1 + 1} is at least Tpyj. This is because every discontinuous
point corresponds to the starting point of a new segment. We call
such an assignment {li}{f=1 a segmentation on Q. When large global
structure variation is present, it is difficult to find a close nearest
neighbor for large Tpin. The patched nearest neighbor is defined by,
minimizing over all possible segmentations,

L
Lo = min+ S0 - TH R, (12
Ly L5

where Q! denotes frame i in Q and T4 denotes frame I; in T. The
PNN can be solved efficiently with dynamic programming, similar
to MotionTexture [2002]; we refer the reader to Appendix B for more
details. In all our experiments, we choose Tyyin = 30, corresponding
to one second of the animation.

Local diversity. Our framework synthesizes animations carrying
similar but diverse visual content compared to the training sequence.
We measure the local frame diversity by comparing every local
window Q,, € W(Q, Ly) of length L to its nearest neighbor in the
training sequence T:

1

|(W(Q’ Ld)| Q. eW(Q.Lg)
Similar to the definition of coverage, we use the Frobenius norm
over local joint rotation matrices. We choose L; = 15 to capture local
differences between the generated result and the training example.

We quantitatively compare our results to MotionTexture [Li et al.
2002] and acRNN [Zhou et al. 2018] using the metrics above as re-
ported in Table 1. Since we use the nearest neighbor cost against the
training sequence to measure diversity, high diversity score does not
necessarily imply plausible results: MotionTexture creates unnatu-
ral transitions that are not part of the training sequence, and acRNN
converges to a pose that does not exist in the training sequence
also leading to a high diversity score. It can be seen that acRNN has
limited coverage due to its convergence to a static pose, while our
method generates motions that cover the training sequence well.
MotionTexture trained as a single texton overfits to the training
sequence, creating little variation on both local and global scale.

Llocal = NN(QW’ T)~ (13)
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Table 1. Quantitative comparison to existing motion generation techniques.

Coverage T  Global Diversity  Local Diversity

MotionTexture [2002] 84.6% 1.03 1.04
MotionTexture (Single) 100% 0.21 0.33
acRNN [2018] 11.6% 5.63 6.69
Ours 97.2% 1.29 1.19

Table 2. Quantitative comparison for ablation study.

Rec. Loss |
W/o contact consist. loss 4.04
Euler angle 23.6
Quaternion 9.25
Full appraoch 2.85

Meanwhile, our model strikes a good balance between generating
plausible motions and maintaining diversity.

4.4 Ablation study

We evaluate the impact of motion representation, temporal recep-
tive field, and the foot contact consistency loss on our performance.
The results are reported in Table 2 and demonstrated in the supple-
mentary video.

Reconstruction loss. In this experiment, we discard the reconstruc-
tion loss and retrain our model. The supplementary video shows
that the quality of the motion is degraded as a result. The reconstruc-
tion loss ensures that an anchor point in the latent space can be used
to reconstruct the training sequence perfectly. Since our framework
generates novel variations of the training sequence, this anchor
point helps to stabilize the generated results. For the same reason,
the reconstruction loss reflects the quality of generated results of
our framework and we report the impact of different components
on the quality of results in Table 2.

Contact consistency loss. In this experiment we discard the con-
tact consistency loss L¢on and retrain our model. Our framework
predicts the foot contact label that can be used to fix sliding arti-
facts in a post-process. Although it can be learned implicitly, i.e.,
without the contact consistency loss, the generated result contains
inconsistent global positions and contact labels, leading to unnatu-
ral leaning and transitions of contact status after the post-process.
The accompanying video shows that the contact consistency loss
promotes consistency between predicted animation and contact
labels, providing a robust fix to sliding artifacts.

Rotation representation. In this experiment we use three differ-
ent representations of joint rotations to train our networks: Euler
angles, quaternions, and 6D representation [Zhou et al. 2019]. The
results are shown in the accompanying video. It can be seen that the
network struggles to generate reasonable results with Euler angles
because of the extreme non-linearity. Quaternions yield more stable
results compared to Euler angles, but the double-cover problem and
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Table 3. Coverage measurement of motion mixing.

Training Set  Coverage of Seq. 1 ~ Coverage of Seq. 2

Only Seq. 1 100.0% 1.5%
Only Seq. 2 2.4% 100%
All Seq. 100.0% 97.8%

the non-linearity still cause sudden undesired changes and degrade
the realism of the generated motion.

Temporal receptive field. A key component of generating diverse
and realistic motion with global variation is the choice of the tempo-
ral receptive field, which we explore in this experiment. We demon-
strate the impact by training our framework on a clip of the YMCA
dance in the accompanying video. We observe that when a large
temporal receptive field is chosen, the network memorizes the global
structure, creating a static pose in the middle of generation without
being able to permute the dance sequence. When the temporal re-
ceptive field is small, the network observes only limited information
about the context and generates jittering results. The network can
generate smooth and plausible permutations of the dance when a
suitable receptive field is picked.

5 APPLICATIONS

In this section we showcase the utility of pure generation and user-
guided generation based on a single training example in different
applications, including motion mixing, style transfer, key-frame
editing, and interactive trajectory control.

Motion mixing. In addition to novel motion variation synthesis
based on a single example animation, our framework can be also
trained on several animations. Given N training animations {Tk }kN: i
we can train a single generative network on all N examples by
replacing the reconstruction loss in Eq. (6) with

1 X .
fee = = DUIGH(T TE |, 2K%) = TF||,. (14)
N k=1

We train our model on two animation sequences of an elephant,
shown in Fig. 7 and the video. We quantitatively measure the cover-
age of novel motion synthesis on two training animations in Table 3.
It can be seen that the generated result of mixed training covers all
the training examples well, and the synthesized output naturally
fuses the two training sequences.

Style transfer. Our framework can perform motion style transfer
using an input animation sequence whose style is applied to the
content of another input animation. We exploit the hierarchical
control of the generated content at different levels of detail. Since
style is often expressed in relatively high frequencies, we use the
downsampling of content input T€ to control the generation of
the neural network trained on style input TS for the style transfer
task. Namely, we downsample the content animation TC to the
corresponding coarsest resolution Tlc and use it to replace the output
of the first level of the network trained on TS. We demonstrate our
result in Fig. 8 and the video. It can be seen that, with a single
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Training sequence 1

Training sequence 2

Closer to sequence 1

Closer to sequence 2

Fig. 7. The model is trained with two sequences. The first sequence (left)
contains relative static motion, the second sequence (right) contains larger
movement. We visualize the skeletal animation of our generated result (blue)
and its patched nearest neighbor (green) in corresponding sequences. It can
be seen that our result contains the content from both training sequence.

example, we successfully transfer the proud style, yielding a proud
walk sharing the same pace as the content input. Due to the fact
that the output is generated by multi-scale patches learned from
the style input T, the content of T is required to be similar to the
content of TS, in order to generate high-quality results (e.g., both of
the inputs are walking).

Key-frame editing. Our framework can also be applied to key-
frame editing (Fig. 9). We train our network on the input animation
T. The user can then manually edit some frames by changing their
poses at the coarsest level Ty, and the network produces smooth,
realistic, and highly-detailed transitions between the modified key-
frames, including unseen but plausible content.

Conditional generation. Our framework can generate motion while
accounting for user-specified constraints on the motion of selected
joints. Formally, given the constrained joints C, the user-specified
constraints C are given by QF€ = {Q/, j € C, where Q/ denotes the
motion of joint j. In the case of motion generation with trajectory
control, we set C = {root position, root orientation}.



Style (proud) Content Aberman [2020b] Ours

Fig. 8. We synthesize the proud style from the style input onto the content
input. It can be seen that our result contains the same content as the content
input while express the proud style, e.g. higher elbow position on walking.
We also show the result from [Aberman et al. 2020b] for comparison.

Edited Key-frames

Fig. 9. We manually edit three key-frames (blue) in the input sequence
by changing the poses. We visualize the result of one editing, where the
character is made to face the audience. It can be seen that our model
follows the editing and generates a plausible result. Please refer to the
accompanying video for a complete result.

The key component of enabling conditional generation is enforc-
ing correlation between the generated motion and the constraints.
The training process of the conditional generation is described in
Fig. 10. As constraints are defined as part of the motion, we use
the concatenation trick, denoted by concat(Q, C), during the training
and inference time, where concat(Q, C) is the result of replacing the
motion of constrained joints Q€ in motion Q by the constraints C.

For the evaluation of the i-th level, given the constraints at corre-
sponding frame rate C;, we use concat(T Q;-1, C;) as the input of the
generator instead of the upsampled result T Q;—; from the previous
level. For training, we randomly generate C; by sampling from a
pre-trained generator mentioned above, taking the corresponding
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Fig. 10. Training of conditional generation. To construct the input for the
conditional generator, we concatenate the constraints (e.g., root joint move-
ment) sampled from a pre-trained generator to the upsampled result gener-
ated with the same condition from the previous level. We again concatenate
the constraints to the result produced by the generator and feed it to the dis-
criminator. The discriminator ensures the correlation between constraints
and the generated result.

Constraints C,
T Mti-Lowl
: Generator &
Random Noise Z, @ Animation Q, 1\ 1}
: Copy
: Eisting Constraints C,  New Constraints C,
. Mati-Level
R T L
Existing Noise Z, New Noise Z, Animation Q g aq
(b)
Existing Constraints C, ~ New Constraints C,
Mutti-Level
@ Generator &
Animation Q

Existing Noise Z, New Noise Z,

©

Fig. 11. Interactive Generation. (a) Our conditional generation framework
can be conceptually simplified as a multi-layer convolutional generator that
takes user-specified constraints e.g., root joint movement, and random noise
as input to generate an animation. (b) When new constraints are given, we
concatenate them with the existing constraints and noise as the input for
the generator. In the generated result, the frames that are outside of the
receptive field of new constraints remain the same (blue area). The frames
within the receptive field of new constraints are changed and are used to
create a smooth transition between existing and new constraints (dark cyan).
The frames complying with new constraints are generated (cyan). (c) During
a generation, we only need to keep the frames within the receptive field of
the dark cyan area, denoted by activated colors.

part of the motion and downsampling it to the corresponding frame
rate. We employ the concatenation trick again on the output of the
generator and let Q; = concat(G;(concat(T Q;-1,C;), zi), C;) as the
output of this stage and feed it into the discriminator. The discrimi-
nator rules out motions that do not belong to the plausible motion
distribution and forces the network to generate motions complying
with the given constraints.
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Interactive generation. Conditional generation is particularly in-
teresting for interactive applications, such as video games, where
the motion of a character needs to be generated online in accordance
to joystick controller inputs, for example. We demonstrate the pro-
cess for exploiting a pre-trained conditional generation framework
for such interactive application in Fig. 11. Unlike RNNs that are
straightforward to use for interactive or real-time generation, con-
volutional neural networks generally require modifications, such as
causal convolution [Oord et al. 2016]. We take a different approach
by exploiting the limited receptive field of convolution.

Let G(C, Z) be the multi-level conditional generation result with
constraints C, where Z is the set of random noise {zi}is=1 used
during generation. In the interactive setting, we assume there are
existing constraints C; and the corresponding random noise Zi,
which generates the result Q; = G(C1,Z;), as demonstrated in
Fig. 11(a). Given the new constraints Cy and corresponding noise
Zy, we concatenate them with C; and Z; along the temporal axis,
denoted by C = ext(Cy, C2) and Z = ext(Z1, Z»), and generate a new
result Q = G(C, Z). Denote the temporal receptive field of G(-) by R
and the lengths of constraints C1 and Cy by L; and Ly, respectively.
Note thaF Ql Li-1 and Qi LT are equal (blue area in Fig. 11(b)),
where Q'*/ denotes frame i to j of motion Q and r = [R/2] is the
halved receptive field. The sequence QL1 ~7*1:L1 js different from

Li—r+1:L s .
11 ™15 and creates a smooth transition to the new constraints

(dark cyan area in Fig. 11(b)). The remaining part Ql1+1:li*lz jg
the newly generated result complying with the new constraints Cy
(cyan area in Fig. 11(b)).

Therefore, given the new constraints, we only need to run the
convolutional network on the concatenation of the last 2r frames of
the existing constraints and the new constraints, as demonstrated by
the activated area in Fig. 11(c), and withhold the last r frames from
displaying on the screen. The full method for interactive generation
is summarized in Algorithm 1. We demonstrate interactive trajectory
control in Fig. 12 and in the accompanying video.

Algorithm 1 Interactive Generation

C; « initial constraints
Z) « inital generated noise
r « halved receptive field of G(-)
Q « G(C1,2Z1)
Display Ql rend-r
while C, < new constraints do
Z, « generated noise
C «— ext(Cy,Cy)
Z — ext(Zy,7Z3)
Q—G6(C2)
Display Qr+l zend—r
Cy — Cend—2r+1:end
71 Zend72r+1:end

end while

6 DISCUSSION AND CONCLUSION

In this work we presented a neural motion synthesis approach that
leverages the power of neural networks to exploit the information
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Input motion

Interactive generation

Fig. 12. We demonstrate the interactive trajectory control on humanoid
and a hexapod crab. It can be seen that our model can cope with diverse
input trajectories despite the single training sequence.

available within a single motion sequence. We demonstrated the
utility of our framework on a variety of applications, including
synthesizing longer motion sequences of the same essence but with
plausible variations, controlled motion synthesis, key-frame editing
and interpolation, and style transfer. Despite the fact that motion
data is irregular, we presented a neural representation and system
for effectively learning to synthesize motion. Key to our technique
is a combination of skeleton-aware convolutional operators, which
serve as a backbone for a progressive motion synthesis framework.

While our current framework enables interactive control of the
synthesized motion trajectory, the motion essence itself has to be
learned offline, in advance. In addition, our current system’s phys-
ical plausibility is limited to simple skeletal kinematics and foot
contact handling. It would be interesting to incorporate higher level
physics to enable synthesis of interactions and motions in complex
environments. An interesting future direction is to explore online
motion learning through sparse demonstrations, for example using
continual learning. It is conceivable that our method could be used
for data augmentation to benefit training of elaborate frameworks
that require large datasets. It is also possible to explore applications
of our ideas in non-skeletal settings, such as facial and other non-
skeletal rigs. Our current approach does not involve the interplay
of motion and shape deformation, although the latter is also an es-
sential part of realistic character animation (e.g., geometric ground



contact for creatures like snake demonstrated in the supplementary
video), and we are keen on exploring this intersection in future
research.
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A  NETWORK ARCHITECTURES

In this section, we describe the details for the network architectures.
Table 4 describes the architecture for our generator and discrim-
inator network for a single level, where Conv and LReLU denote

ACM Trans. Graph., Vol. 41, No. 4, Article 138. Publication date: July 2022.

in/out channels

Generator Conv + LReLU Fy/Fy
Conv + LReLU Fy/2F,
Conv + LRelLU 2Fy/2F,
Conv 2Fy/Fy

Name Layers

Discriminator Conv + LRelLU Fy/Fy
Conv + LReLU Fy/2F,
Conv + LReLU 2Fy/2F,
Conv 2Fy/1

Table 4. Network Architectures

skeleton-aware convolution [Aberman et al. 2020a] and leaky ReLU
activation respectively. All the convolution layers use reflected
padding, kernel size 5 and neighbor distance 2. For simplicity, we
denote the number of input animation features JQ + 3 + |F| by Fy.

In our experiments, we use Adygy = 1, Arec = 50,Acon = 5 and
Agp = 1.

B SOLVING PATCHED NEAREST NEIGHBOR

In this section, we describe how to solve the patched nearest neigh-
bor (PNN). Given the generated animation Q of length Lo and the
training animation T of length Lt, we search for the correspond-

ing segmentation {li}ljffl for each frame in Q, such that the min-
imum distance of any two points in the discontinuous point set
{i | l; # li—1 + 1} is no less than Tyy;,.

Let D(i) denotes the PNN for first i frames, with boundary condi-
tion D(0) = 0. We can solve other D(i) by

D(i) = min D(j) + cost(j, i, k) (15)
0<j <i~Tmin,1<k<Lr—i+j
JG),K@G@) = arg min D(j) + cost(j, i, k) (16)
0<j<i~Tnin,1<k<Lr—i+j
i-j X
cost(j,i,k) = D IQI™ — T2, (17)
m=1

where cost(j, i, k) denotes the distance between Q/+1# and Tk+1k+i~J
After solving D(i), J(i), K(i), the label {I;} can be backtraced by Al-
gorithm 2.

Algorithm 2 Backtracing Label

p <—LQ

while p > 0 do
LGpyrip < K@)+ LK@) +2,---,K(p) +p — J(p)
p < Jp)

end while

The cost(j, i, k) can be precomputed with time complexity O(LéLT).

The dynamic programming for solving D(i) also runs with time com-
plexity O(LéLT). The PNN cost £Lpn is given by D(Lg)/Lo.
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