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Figure 1: We propose a neural garment dynamics inference network powered by manifold-aware transformers. Our approach can be directly
applied to unseen garments, bodies, as well as motions that were not included in the training data.

Abstract
Data driven and learning based solutions for modeling dynamic garments have significantly advanced, especially in the context
of digital humans. However, existing approaches often focus on modeling garments with respect to a fixed parametric human
body model and are limited to garment geometries that were seen during training. In this work, we take a different approach and
model the dynamics of a garment by exploiting its local interactions with the underlying human body. Specifically, as the body
moves, we detect local garment-body collisions, which drive the deformation of the garment. At the core of our approach is a
mesh-agnostic garment representation and a manifold-aware transformer network design, which together enable our method to
generalize to unseen garment and body geometries. We evaluate our approach on a wide variety of garment types and motion
sequences and provide competitive qualitative and quantitative results with respect to the state of the art.

1. Introduction

Modeling the dynamics of garments as they interact with an un-
derlying collider, such as a moving human body, is a core compo-
nent for many graphics applications, e.g., animation [WCPM18],
virtual try-on [STOC21], video editing [YAP*16], etc. There are
two main directions to tackle this problem, i.e., physically-based
simulation [NMK*06; NSO12], and learning-based neural ap-
proaches [PLP20; BME21]. Physically-based simulation provides
a generic framework to produce plausible and accurate geomet-
ric details with realistic motion dynamics. However, acquiring
and setting the physical parameters used in the simulation is not
easy and often the simulation process is sensitive to initial con-
ditions [ZWCM21]. To address such issues, learning-based ap-
proaches are getting popular in recent years. A typical learning-
based workflow [WCPM18; PMJ*22] models the garment dynam-
ics as a mapping from the encoded garment and collider (i.e., body)

motion features to a latent code representing the garment shape
in the next frame. The compact latent representation enables ef-
ficient inference and acts as a regularizer. However, such global ap-
proaches are difficult to generalize to unseen garment and collider
geometries during training.

In this work, we introduce a novel and generalizable learning-
based framework for predicting the garment dynamics by model-
ing the local interaction between the garment and the underlying
collider. Specifically, we represent the garment deformation with
a continuous deformation field [SCL*04; LSC*04] where we treat
each face of the garment geometry as a sample of this field. We
define a set of garment and interaction features for each face to en-
code the state of the garment relative to the underlying body as the
body moves from the current to the next frame. Such features in-
herently encode how each local patch on the garment geometry in-
teracts with the underlying body. We accumulate such features over
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the past few frames to encode the dynamic behavior and augment
them with global context (i.e., the global velocity of the garment).
Finally, we train a neural network to predict the deformation gradi-
ent of each garment face given this local and global context. Given
per-face predictions, we perform a Poisson solve to obtain the final
garment geometry in the next frame. Our network runs in an auto-
regressive manner by utilizing its past predictions when computing
the garment and interaction features that are provided as input to
the network in future frames.

Central to our approach is a transformer-based network architec-
ture [VSP*17] that predicts the deformation of a target point (e.g.,
the centroid of a face) when given tokens that represent the afore-
mentioned features sampled on a random set of points on the gar-
ment surface. The transformer architecture is capable of modeling
long-range correlations between how different parts of the garment
deform. While spatial proximity is a strong cue for similar defor-
mation behavior, in certain cases, spatially close garment parts can
have very different dynamic behavior. For example, imagine two
sides of a skirt with a cut (see Figure 9) where nearby points on
two sides of the cut behave differently. In order to handle such chal-
lenging cases, we empower our transformer to be manifold aware.
Specifically, we utilize the geodesic distance matrix obtained from
the rest state of the garment as part of the attention weights. This
encourages the predicted deformation to preserve the geodesic dis-
tance in the resulting garment geometry.

Our approach generalizes to a variety of garment types and ge-
ometries. We evaluate our method on garment and body types and
motion sequences unseen during training. Our approach produces
plausible garment geometry with vivid dynamics and performs
competitively with respect to the state-of-the-art learning-based ap-
proaches. In summary, our main contributions are:

• We present a generalizable learning-based approach that predicts
plausible garment dynamics for unseen garment and body types.

• We present a novel manifold-aware transformer architecture that
incorporates both spatial and topological information and is ag-
nostic to the underlying meshing density, and can generalize to
garments with unseen local connectivity changes such as cuts.

2. Related Work

2.1. Physics-based Simulation

Modeling the dynamics of the garment w.r.t. the underlying col-
lider motion has been studied in computer graphics for more
than 30 years [TPBF87; MW88]. Physics-based methods [Mül08;
MHHR07; NSO12] tend to model the garment dynamics with real-
world physics based on material properties and deform them ac-
cording to laws of physics using time integration and collision
response. The focus of this community includes material model-
ing [BTH*03; MBT*12], mechanical modeling [CK05; VMF09],
as well as collision modeling [HVS*09; LKJ20], and more recently,
converting the whole pipeline to a differentiable setup [LDW*22;
LLK19] for inverse problems. Physics-based workflows often pro-
duce high-quality dynamics but suffer from high computational
costs and the tediousness of tuning the material property for a de-
sired effect.

2.2. Data-driven and Learning-based Methods

Prior to the bloom of deep learning, there have been several
data-driven approaches to model garment deformations. Aguiar et
al. [DSTH10] propose to learn a linear dynamic system on the PCA
subspace of garment deformation driven by a pre-defined body to
achieve real-time performance. Guan et al. [GRH*12] also explore
statistical models to tackle how garments drape on different body
shapes and poses. Luo et al. [LSW*18] use a lightweight neural
network to transform a linear elasticity-based deformation into a
non-linear deformation. Holden et al. [HDDN19] introduce neural
networks that adapt subspace representations, making it possible to
handle interactions between multiple objects. While being efficient,
subspace-based methods are often limited to the training data and
difficult to extrapolate to unseen settings.

In order to leverage the recent success of neural network ar-
chitectures in the 2D domain, recent approaches have utilized 2D
canonical representations (i.e., UV mapping) for encoding the gar-
ment deformation. DeepWrinkle [LCT18] predicts pose-dependent
wrinkles represented as normal maps in the UV space. Zhang et
al. [ZWCM21] propose to refine the details of coarse simulation us-
ing a similar representation. In addition to pose-dependent effects,
Jin et al.[JZGF20] aim to model motion-dependent deformations.
While such UV-based representations effectively utilize 2D convo-
lutions, they are limited in encoding spatial neighborhoods across
UV seam boundaries.

Predicting the 3D geometry of the garment directly is considered
an alternative solution. Gundogdu et al. [GCS*19], Habermann et
al. [HLX*21] fuse body and garment geometry features to predict
pose-dependent effects in the canonical pose, and deform the result
with linear blend skinning (LBS). Patel et al. [PLP20] also incor-
porate the dynamics and the change of garment styles, but model
the garment as a height field over the body surface which is lim-
ited to tight-fitting garments. Zhang et al. [ZCM22] handle loose
garments by first learning a plausible deformation latent space but
still training garment-specific networks. Pan et al. [PMJ*22] utilize
a virtual skeleton with additional virtual joints to better capture the
low-frequency of loose garments with respect to the body motion.
Similar to D. Li et al. [DTY*22], high-frequency displacements are
then added with a graph neural network. While showing impressive
progress, many of these methods, however, are specific to a training
garment.

The time-consuming generation of training data with physically-
based simulation often acts as a bottleneck for data-driven ap-
proaches. Hence, several unsupervised methods have been pro-
posed recently. Bertiche et al. [BME21] use physically-inspired
loss terms in combination with LBS deformation to predict pose-
dependent deformations. A similar approach is also used by De
Luigi et al. [DLG*22]. Santesteban et al [SOC22] extend the idea
to and introduce strain and inertia-based losses. [BME22] train a
network to predict the garment status such that it minimizes a com-
bination of energy terms. We provide comparisons to some of these
methods in the experiments section.

While learning-based methods have shown remarkable advances
in recent years, generalization, i.e., generalizing to unseen gar-
ment types, still remains a challenge. In most recent concurrent ap-
proaches, GarSim [TB23] and HOOD [GTBH23] tackle this chal-
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Figure 2: Our framework overview. We extract the garment features and interaction features on the garment geometry from the past frames.
Our manifold-aware transformer is then applied spatially to the input features and predicts the relative deformation gradients to the next
frame. An initial prediction is obtained with a Poisson solver. After the collision refinement, we get the prediction for the next frame. We
auto-regressively repeat this process until the desired number of frames is reached.

lenge by utilizing a graph-convolution-based framework [PFSB20].
Due to the limited receptive field of graph convolutions, their meth-
ods are sensitive to the resolution of the input meshes and require
specific designs to incorporate more global information. We pro-
vide qualitative comparisons in the supplementary material regard-
ing these methods.

2.3. Transformers

Proposed by Vaswani et al. [VSP*17] for natural language pro-
cessing, transformers have quickly been adapted to many areas, in-
cluding 3D tasks [GCL*21; DB20; CZG*22; YSW*23]. We also
adapt a transformer-based architecture and introduce a manifold-
aware structure to capture both local mesh neighborhoods and
long-distance dependencies effectively.

3. Overview

Given the motion of an underlying collider, such as a human body,
our goal is to predict the deformation of the garment as it interacts
with the body. Our key insight is that garment deformations can be
predicted in a generalizable manner by modeling the local interac-
tion between the garment and the body surface. We introduce a set
of garment features (e.g., the deformation gradient, velocity, and
relative distance between the garment and the body) that capture
such local interactions. We form tokens from the features obtained
from a set of triangle faces sampled on the garment surface mesh.
We introduce a manifold-aware transformer network that utilizes
such tokens obtained from a set of past frames to predict the defor-
mation of the garment in the current frame. We empower the trans-
former network to be manifold-aware by encoding the geodesic in-
formation of the garment in addition to the local interaction fea-

tures. Specifically, we replace part of the learned attention weights
with the geodesic matrix obtained from the garment surface.

We represent the garment deformation using a Jacobian
field [AGK*22]. We discretize the continuous Jacobian field with
random samples obtained on the mesh representation of the gar-
ment. Given the predicted deformation gradient, we solve a Poisson
equation to reconstruct the explicit garment surface. Our approach
is agnostic to the connectivity and the density of the triangulation of
the garment surface and can handle garments with various topolo-
gies. We provide the overall architecture of our framework in Fig-
ure 2 and next discuss the details of our approach.

4. Method

4.1. Pipeline

We represent the garment and the underlying body geometry with
their corresponding vertex positions at a particular time t and the
mesh triangulation. Specifically, let {Vt ,Tg} denote the garment
with triangulation Tg and vertex positions Vt and let {Ut ,Tb} de-
note the underlying body with triangulation Tb and vertex posi-
tions Ut . Given the previous states of the garment in the past nhist
frames, i.e., {Vt−nhist+1, · · · ,Vt}, and the state of the body in the
next frame, i.e., Ut+1, our goal is to predict Vt+1, i.e., the state of
the garment in the next frame. We introduce a transformer-based
network that takes as input a set of features Ft

i computed for each
face on the garment surface utilizing the past and current states of
the garment and the underlying body. The output is the relative de-
formation gradients Ψ

t+1 of each face in the next frame, and global
velocity qt+1 of the entire geometry. We then compute the absolute
deformation Φ

t+1 to reconstruct the garment mesh at time t + 1
via the Possion equation [SP04; SCL*04]. To reduce the accumu-
lation of error, we also predict the singular values Σ

t+1 for Φ
t+1
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Figure 3: Our manifold-aware transformer architecture. The input features are extracted from the faces of the input mesh. After being
projected into embedding space by a linear transformation, they are fed into the transformer encoder consisting of nl identical layers.
Our manifold-aware self-attention layers explicitly involve local connectivities of the input geometry, making it possible to predict accurate
dynamics caused by seams. The output of the transformer encoder is projected to the output features by another linear transformation. The
output features are then used to predict the next frame of garment deformation.

at the next frame and use it to regularize the stretching. Since the
predicted cloth geometry is not guaranteed to be collision-free with
the body geometry, we use a post-processing strategy adopted from
DRAPE [GRH*12]. A pseudo-code of this process is shown in Al-
gorithm 1. We refer the readers to the supplementary material for
a detailed discussion on the deformation gradients and the post-
process collision refinement method.

Algorithm 1 Prediction of frame t +1 from the past nhist frames

Input: Garment vertex positions Vt−nhist:t , body vertex position
Ut−nhist:t+1

Output: Vertex positions Vt+1

procedure PREDICTFRAME(Vt−nhist:t ,Ut−nhist:t+1)
Ft ← features extracted from garment V and body U
Ψ

t+1, Σ
t+1, qt+1← prediction from the network with Ft

Φ̄
t+1←Ψ

t+1
Φ

t

Φ
t+1← replace singular values of Φ̄

t+1 with Σ
t+1

V̄t+1 ← solve a Poisson problem with Φ
t+1 and velocity

qt+1

Vt+1← collision refinement for V̄t+1

end procedure

4.2. Garment and Interaction Features

Our network takes as input a set of features defined on the garment
geometry. In order to capture the dynamics of the garment, we stack
the features obtained from past nhist frames together. For simplicity,
we describe the features computed from a single frame and omit the
frame index t in the following text unless otherwise specified.

In addition to the deformation gradient Φi, derived from the pre-
dictions of preceding frames, in an auto-regressive fashion into the

present frame, we also define a set of features for a given triangle
i to encode the current state of the garment as well as its interac-
tion with the body. The following features encode the state of the
garment geometry.

Orientation. The deformation gradient Φi records the deforma-
tion relative to the rest state. Hence, the network is not aware of
the orientation of the surface. To mitigate this issue, we include the
normal direction ni in the world-coordinate of triangle i as part of
the input feature.

Centroid. The input to the transformer network is permutation
invariant. Similar to the positional encoding used in the original
transformer, we include the centralized centroid coordinate ci =
ci− z of each triangle to preserve the spatial order information. ci
is the centroid of triangle i and z = 1/|T |∑i∈T ci is the average
centroid of the garment at a given frame.

Global velocity. The solution of the Poisson equation is not
unique up to a translation. We thus incorporate the per-frame global
velocity qt = zt − zt−1 as part of the input.

In order to capture the interaction of the garment with the under-
lying body, we also define a set of interaction features as follows:

Signed distance. We encode the relative position of the garment
with respect to the body. For every triangle i in the garment, we
record its signed distance di to the body. In addition, we also record
a direction v⃗i of the nearest point on the body to the centroid ci of
triangle i. This constitutes the singed distance feature si = {di, v⃗i}∈
R4. It serves as the local coordinate of the collider, enabling us to
encode collider deformation in the garment space.

Collider deformation. For the network to predict the deforma-
tion at frame t + 1, we incorporate the deformation of the collider,
i.e., the body, at frame t +1 as part of the input feature. To this end,
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for each face i in the garment in the current frame, we compute
its nearest face on the body in the current frame. We define a col-
lider deformation feature, di = {di, q⃗i} ∈ R12, where di ∈ R3×3

represents the relative deformation gradient to the next frame of its
nearest body face and q⃗i is the velocity of the centroid of the nearest
body face.

Note that, unlike commonly used SMPL [LMR*15] body and
pose parameters, the proposed interaction features are not limited
to a specific body model and can be directly applied to any other
type of collider geometry. We conduct experiments showing the
versatility of the proposed interaction features in Section 5.2.

4.3. Manifold-aware transformer networks

Network input and output. We denote the concatenation of the
aforementioned per-triangle features as fi = {Φi,ni,ci,si,di,Σi}.
Furthermore, we collect the features of past nhist frames together as
Ft

i = {fk
i }tk=t−nhist+1. The input to our network is Ft along with the

global velocity of the garment in the past nhist− 1 frames denoted
as Qt = {qk}tk=t−nhist+2. The network then predicts the relative de-
formation gradient Ψ

t+1
i and the singular value Σ

t+1
i for every face

i and the global velocity qt+1 of the garment in the next frame.

Architecture. The overview of our network architecture is
demonstrated in Figure 3. For memory and computational effi-
ciency, we evenly split the faces into ns disjoint subsets {Ti}ns

i=1.
For each of the split Ti ⊂ T, we gather the features {Ft

j} j∈Ti of ev-
ery triangle in this split, concatenated with the global velocity fea-
ture Qt , as the input to the network. Note that the features {Ft

j} are
calculated before the splitting, and no downsampling is involved
for feature calculation. A linear transformation first maps the input
features into an embedding space of dimension ne. The embeddings
of the features are then passed through nl transformer [VSP*17] en-
coder layers, where the self-attention mechanism learns to capture
the global context. Unlike graph convolution-based networks with
only limited receptive fields, our transformer-based architecture is
capable of learning long distance correlation. The output of the last
encoder layer is passed through a linear layer to predict the relative
deformation gradient Ψ

t+1 and singular values Σ
t+1, as well as the

global velocity qt+1 for the next frame. Note that this framework
is triangulation-agnostic and is by nature not limited to a single
garment. The network can be trained with multiple types of gar-
ments and colliders, and can be used to predict unseen clothes. We
demonstrate the versatility of our network in Section 5.1.

Manifold-aware self-attention. For the cases with complex gar-
ments or challenging body poses, close-by spatial locations over the
garment surface may have very different dynamic behavior, e.g., the
sleeve opening for left/right arm of a shirt can be spatially close un-
der a crossed arm pose while their dynamic behavior might be dif-
ferent as shown in Figure 8. To prevent such spurious correlations,
we consider the connectivity of the garment surface. Specifically,
we propose a manifold-aware self-attention mechanism. For nconn
heads, we use the pairwise geodesic distance between the centroids
of the triangles as the attention score as below:

Ai· = softmax(−Dpgeo
i· ), (1)

where Di j denote the matrix of pair-wise geodesic, pgeo is the ex-
ponential index to control the attention range. We visualize the

pgeo = 1 pgeo = 5 pgeo = 20

Figure 4: Geodesic attention weights. We use pgeo to control the
attention range.

geodesic attention weights for a triangle in Figure 4. For an in-
depth study of the effect of manifold-aware self-attention, we refer
the readers to Section 5.2.

4.3.1. Singular value prediction

Our network predicts the relative deformation between two consec-
utive frames and auto-regressively predicts further frames based on
existing predictions. This can lead to error accumulation of the ab-
solute deformation gradient, and cause severe area distortion of the
geometry. As singular values indicate the scaling of the deforma-
tion gradient along the three principal directions, to mitigate this
issue, we also predict the singular values of the deformation gra-
dient. During inference time, we accumulate the predicted relative
deformation gradients to absolute deformation gradients. We per-
form SVD and replace the singular values with the predicted ones
before using them to reconstruct the deformed mesh with Poisson
equation. We refer the readers to Section 5.2 for the study on the
effect of singular value prediction.

4.3.2. Loss functions and training

We adopt a fully-supervised training scheme to learn the deforma-
tion field from a set of physically-simulated training data. The train-
ing is supervised via the following loss terms:

Deformation gradient loss. The L1 norm is employed to mea-
sure the difference between the predicted relative deformation gra-
dients Ψ

t+1
i and the ground truth Ψ̃

t+1
i :

Ldef =
1
|Ti| ∑

j∈Ti

∥Ψt+1
j − Ψ̃

t+1
j ∥1. (2)

Singular value loss. Similarly, the L1 norm is utilized to mea-
sure the difference between the predicted singular values Σ

t+1
i and

the ground truth Σ̃
t+1
i :

Lsv =
1
|Ti| ∑

j∈Ti

∥Σt+1
j − Σ̃

t+1
j ∥1. (3)

Global velocity loss. The L1 norm is applied to measure the
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Figure 5: Breakdown of inference performance.

difference between the predicted global velocity qt and the ground
truth q̃t :

Lvel = ∥qt − q̃t∥1. (4)

Our full loss used for training summarizes as:

L= Ldef +λsvLsv +λvelLvel. (5)

During training, we supervise only one step of prediction. We
random sample nhist + 1 consecutive frames from a physically-
simulated dataset and use the features of the first nhist frames as
input of the network, and supervise the prediction on frame nhist+1
using the loss functions in Equation (5). Besides, all input features
are normalized to have zero mean and unit variance. To prevent
error accumulation in our auto-regressive workflow, we add noise
to the input features of the network during the training. Specifi-
cally, we add a random noise ε∼N (0,σn) to the normalized input
features Ft . The noise is sampled independently for each feature
dimension and each triangle. We find that this is a simple yet ef-
fective solution to stabilize the long-term generation. For a detailed
description of the layers in our network and the specific values of
the hyper-parameters, we refer to the supplementary material.

5. Experiments

We evaluate our approach on various garment and body types to
demonstrate the generalization ability of our method. We also com-
pare with other neural techniques and provide an ablation to eval-
uate the effectiveness of various components in our design. Please
refer to the supplementary video for qualitative results.

5.1. Implementation details

Our framework is implemented in PyTorch [PGM*19], and the ex-
periments are performed on an NVIDIA GeForce RTX 3090 GPU.
We optimize the parameters of our network with the loss term in
Equation (5) using the Adam optimizer [KB14]. It takes about 48

Figure 6: A general model for different garments. Our model is
capable of predicting the dynamics of different garments driven by
various motions.

hours to train our network. We refer the readers for a detailed de-
scription of our network architecture and hyper-parameters to the
supplementary material.

Running time. We show a breakdown of the running time of
each component in Figure 5. The most expensive operation is col-
lision refinement, which involves solving a sparse linear system
of size 3N× 3N, where N is the number of vertices. The feature
collection contains the computation of the network input fi ex-
cluding signed distance function (SDF), which is listed separately.
Our efficient SDF calculation is implemented on GPU by com-
bining minimum pairwise distance and winding numbers [JKS13].
The Poisson solver is implemented with a pre-computed Cholesky
decomposition using CHOLMOD [CDHR08] and solving on the
GPU [Nau11] using the implementation by Nicolet et al. [NJJ21].

Dataset. We train our model with the CLOTH3D
dataset [BME20] which contains 7 categories of garments
(shirt, shirt, top, trousers, skirt, jumpsuit, and dress). Within
each category, garment shape is augmented using cutting and
resizing. The garments are then simulated in 3D on a body that is
animated with a motion sequence from the CMU human motion
dataset [CMU19]. We randomly select 200 simulated sequences
(around 50,000 frames) and train our model with 6 garment
categories, excluding the “skirt” category. Since the dataset also
contains several material configurations, we use the “cotton”
configuration as our training data.

At test time, we evaluate our model with unseen augmentations
(i.e., cutting and resizing) of the seen garment types and with gar-
ments in the unseen “skirt” category, driven by 30 unseen motion
sequences.

Evaluation Metrics. We evaluate our method with respect
to ground truth simulation results using the mean vertex error
(in cm) and Chamfer Distance [WPZ*21]. We also measure the
geodesic distortion by calculating the L1 error between the pair-
wise geodesic distance of the generated results and ground truth.
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1032 faces 2067 faces 5168 faces

Figure 7: Robustness to remeshing. Our network predicts consis-
tent results for different meshing, thanks to our feature representa-
tion and network architecture.

w/o manifold awareness Full approach

Figure 8: Manifold awareness. The manifold aware component is
able to resolve instances where spatial proximity happens to un-
connected cloth segments. While without the manifold-aware com-
ponent, it fails to distinguish the two segments.

5.2. Results

As shown in Figure 6 and our supplementary video, our method
can synthesize realistic results on different types of garments and
correctly capture the subtle dynamics. In the following, we provide
a more thorough evaluation.

Robustness to remeshing. The input and output features of
our network are triangulation-agnostic. Furthermore, the manifold-
aware self-attention module is also robust to changes in triangula-
tion. We evaluate our model on the same garment with different
meshing, specifically containing 1032, 2067, and 5168 faces, re-
spectively. It can be seen in Figure 7 that our method generates con-
sistent results across different mesh resolutions, which is not pos-
sible to handle with graph-convolution-based methods [GTBH23;
TB23].

Effect of manifold-aware self-attention. In certain motion se-
quences, two different parts of the garment (e.g., the sleeves and
the torso) can spatially come close together while their dynamics
are still significantly different. As shown in Figure 8, our manifold-
aware attention module can effectively handle such cases and gen-
erate plausible results.

Since our model explicitly encodes the geodesic information, it
can generalize to garments with unseen seam cuts. Due to the lack
of connectivity changes in the CLOTH3D dataset, we created a
dataset from a given dress with 10 different seam cuts as the train-

w/o Manifold wareness Full approach

Figure 9: Local connectivity changes, such as a cut as seen here,
are incorporated into our network’s prediction with the help of the
manifold-aware transformer.

Table 1: Ablation study.

Mean vertex error (cm) Geodesic distortion

w/o manifold-aware 4.54 2.83×10−2

w/o singular prediction 12.2 9.33×10−2

Full approach 3.19 2.05×10−2

ing set and 2 different seam cuts as the test set. It can be seen in
Figure 9 that our model is able to synthesize plausible results re-
flecting the unseen seam cuts without re-training. Please refer to
the accompanying video for a complete result.

We conduct an ablation study over the manifold-aware compo-
nent by using only learned attention weights. As shown in Table 1,
the geodesic information not only leads to better visual perfor-
mance, but also better preserves the geodesics.

Choice of pgeo. As can be seen in Figure 10, a too small or too
large pgeo yields inferior results. We show that our model is robust
to a large range of pgeo values in Table 2. When pgeo ranges be-
tween 1 and 50, the mean vertex error (MVE) remains small. We
use pgeo = 20 in our other experiments.

Effect of singular value prediction. We evaluate the effective-
ness of our singular value prediction term in Equation (3) by remov-
ing it from the loss function and directly using the predicted defor-

Small pgeo Suitable pgeo Large pgeo

Figure 10: Choice of pgeo. We show that with a suitable choice of
pgeo, our method can handle the problem of spatial proximity, while
a too small or a too large pgeo can lead to artifacts.

© 2024 The Authors.
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Table 2: Ablation study on the choices of pgeo.

pgeo 0.01 0.1 1 10 20 50 100

MVE (cm) 4.34 3.79 3.23 3.31 3.19 3.20 4.72

w/o singular value prediction Full approach

Figure 11: Singular value prediction. With the help of predicting
singular values of absolute deformation gradient, our method does
not suffer from the over-stretching problem.

mation gradient without replacing the singular values. As shown
in Table 1 and Figure 11, the singular value prediction term helps
prevent the accumulation of stretching and produces more accurate
results.

Unseen body model. While our training data is driven by the
SMPL [LMR*15] model, our model can be applicable to differ-
ent human body geometries. As shown in Figure 12, we test our
model with a mannequin, a significantly different body model from
the SMPL and demonstrate plausible results. Please refer to the ac-
companying video for additional results.

5.3. Comparisons

Supervised methods. We compare out method to SSCH [STOC21]
as a baseline supervised method. For a fair comparison, we retrain
our model with the same VTO dataset this method is trained on.

Training body Unseen body Our result

Figure 12: Unseen body model. The mannequin wearing the dress
is not seen by our model during training. However, it is still able to
predict a plausible result.

Table 3: Quantitative comparison to the supervised method.

Mean vertex error (cm) Chamfer distance

SSCH [STOC21] 2.93 3.84×10−4

Ours 2.69 3.30×10−4

SSCH [STOC21] Ours Ground truth

Figure 13: Comparison to SSCH. Our network is able to faithfully
capture the dynamics of the garment.

The results generated by our method faithfully reconstruct the dy-
namics of the garment as demonstrated in Figure 13. We also report
superior quantitative results in Table 3.

Unsupervised methods. We compare our method to the state-
of-the-art of unsupervised learning method SNUG [SOC22]. We
use the version of our method trained on the VTO dataset that this
method is also trained on. Note that SNUG requires new training
for every new garment while our method provides a general model.
It can be seen in Figure 14 that our model is able to generate plau-
sible results and provides better dynamics, while the garments are
not seen during training. Please refer to the accompanying video
for a complete result.

Generalizable methods. Finally, we compare our method to the
concurrent works [TB23; GTBH23] that tackle the generalization
problem. As the code/date of GarSim [TB23] is not publicly avail-
able yet, we are limited to providing qualitative comparisons in the
supplementary material. To compensate for the limited receptive
field of graph convolution, HOOD [GTBH23] constructs a hierar-

SNUG [SOC22] Ours

Figure 14: Comparison to SNUG. The global self-attention of our
model allows the cloth to deform naturally in front of the torso,
yielding better visual quality, while the baseline fails to generate
the same effect.

© 2024 The Authors.
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HOOD [GTBH23] Ours

Figure 15: Comparison to HOOD. The meshes shown in the first
and second rows contain 5,169 and 31,008 faces, respectively. It
can be seen that our method produces consistent results across
different resolutions, whereas HOOD exhibits unnatural dynamics
and artifacts when processing high-resolution input.

chy of simplified meshes. As demonstrated in Figure 15, when pro-
vided with high-resolution input, HOOD struggles to capture cor-
rect global dynamics due to the slow propagation of these dynamics
and generates undesired artifacts caused by simplified graph con-
struction. Please refer to the accompanying video for detailed re-
sults.

6. Conclusion

In this paper, we introduce a learning-based generalizable solu-
tion for predicting garment dynamics with respect to an underly-
ing body in motion. Previous learning-based approaches have been
limited to garment-collider combinations present in the training
dataset, often requiring refinement when applied to unseen cases.
To address this limitation, we propose a deformation field-based
garment representation combined with a transformer-based neural
network. This combination enables us to handle different garment
types and body models as colliders, contrary to existing methods,
which are usually limited to a predefined parametric model (e.g.,
SMLP [LMR*15]). Additionally, we incorporate pairwise geodesic
distances to weight the self-attention heads in our network, result-
ing in a manifold-aware transformer capable of capturing not only
spatial but also topological correlations.

Our experiments demonstrate that our method can handle chal-
lenging scenarios involving complex garments and dynamic mo-
tions. We believe that our approach represents a novel direction to-

ward modeling realistic and captivating clothing behavior for gen-
eral garment dynamics and digital human modeling.

Limitations and Future work. To focus on our key insights,
we have made several assumptions to simplify the problem setup.
However, these assumptions also set limitations for our work and
may stimulate potential future work.

Self-collision handling We do not explicitly handle the garment-
to-garment collisions. Thanks to our manifold-aware transformer,
garment self-interpenetrations do not affect our auto-regressive
workflow and are visually hard to observe according to our experi-
ments. However, this could still be a problem for some downstream
applications and may eventually lead to physically incorrect gar-
ment modeling.

Material variation. Our training dataset is produced by the same
set of parameters, so the fabric material variation is not formulated
into our current model. Allowing the users to control the material
property can be a bonus feature for many scenarios [WCPM18].

Fine details in predicted geometry. Although our method can
handle global dynamics well, the results lack fine details such as
wrinkles when compared with state-of-the-art methods, as can be
seen in the collar region in Figure 14. We conjecture that this is due
to the downsampling strategy and could be improved by reducing
the downsampling rate and training over a longer time.

Unsupervised learning. Last but not least, recent advances in un-
supervised garment dynamics learning based on physical proper-
ties [BME22; SOC22] show a promising direction with no data
generation burdens. We believe having the terms from the physical
constraints can potentially elaborate our approach in an unsuper-
vised manner as well.
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1. Deformation Gradients

In this section, we review the preliminaries for the deformation gra-
dients and Poisson equation.

1.1. Deformation gradients field

Given a discretized garment mesh, assumed to be a 2-manifold tri-
angular mesh with vertices position Vrest at rest status and triangu-
lation T. For a triangle i associated with vertices v j,vk,vl (counter-
clockwise), its local coordinate Qi as a 3× 3 matrix is defined as[
vk − v j,vl − v j,ni

]
and ni is the unit outward normal of triangle i.

The deformation gradient of triangle i at frame t with vertices posi-
tion Vt w.r.t. to the rest status can then be defined as Φ

t
i =Qt

iQ
−rest
i ,

where Q−rest
i refers to matrix inversion of Qrest

i , the local coordinate
of triangle j at rest status. We denote the deformation gradient field
at frame t as Φ

t := {Φ
t
i}i∈T. We choose deformation gradients be-

cause they fully capture the local deformation of the garment and
are invariant to the global translation and rotation.

1.2. Relative deformation gradient

Although the deformation gradients field provides a triangulation-
agnostic representation, directly predicting the deformation gra-
dient of frame i based on features of previous frames is not the
most efficient way. Instead, the residual of the deformation gradi-
ent field between two frames, namely the relative deformation gra-
dients Ψ

t = Φ
t
Φ
−(t−1), where Φ

−(t−1) is the element-wise matrix
inverse of Φ

t−1, is more suitable for learning the dynamics of the
garment deformation and frees the network from the effort of re-
membering the absolute deformation from previous frames.

1.3. Poisson equation

Given an arbitrary deformation gradient field Φ
t , we can recon-

struct the deformed mesh by solving a Poisson equation:

V∗ = argmin
V

∑
i∈T

si
∥∥Φi(V)−Φ

t
i
∥∥2

F , (1)

where si is the area of triangle i and Φi(V) is the deformation gradi-
ent of triangle i given vertex positions V. It is a sparse linear system

Before After

Figure 1: Collision refinement. Our post-process refines the colli-
sion between garment and body in raw prediction by minimizing
the proposed energy.

w.r.t. to V and can be efficiently solved with the Laplace-Beltrami
operator [SP04; SCL*04].

2. Collision refinement

We use a post-process adopted from DRAPE [GRH*12] for colli-
sion refinement. Assuming the predicted cloth’s vertex position is
Ṽ and the body’s vertex position is U, we solve for a new vertex
position V to minimize the following energy functions:

Ecollision = ∑
(i, j)∈C

∥ε+ n⃗ j · (Vi −U j)∥2
2, (2)

where C is the set containing the paired indices of the cloth vertex
i in collision with the body and its nearest body vertex j, and n⃗ j is
the outward normal of the body vertex j. This energy pushes the
vertices inside the body away from the body surface. Besides, we
also want to keep the local geometry of the cloth unchanged. We
thus also include the following Laplacian term:

Elap = ∥∆V−∆Ṽ∥2
2. (3)
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GarSim [TB23] Ours

Figure 2: Qualitative comparison to GarSim.

To make this system determined, we add the following regulariza-
tion term:

Ereg = ∥V− Ṽ∥2
2. (4)

The overall energy function is thus:

E = Ecollision +λlapElap +λregEreg, (5)

and we use λlap = 0.5 and λreg = 1 × 10−3 in our experiments.
It is a sparse least-square problem and can be efficiently solved
with Cholesky decomposition. We show an example of collision
refinement in Figure 1.

3. Qualitative Comparisons

In this section, we qualitatively compare our results to the results
of GarSim [TB23]. As can be seen in Figure 2, our model is able
to create more dynamics thanks to the global awareness introduced
by our manifold-aware transformer architecture.

4. Network architecture

In this section, we describe the detailed network architecture of our
framework.

We use an encoder-only transformer [VSP*17] architecture. Our
model contains 8 layers of transformer block. Each transformer
block contains a multi-head self-attention layer and a feed-forward
layer. The embedding dimension and the feed-forward layer di-
mension are set to 512. The number of heads is set to 8. We use
a dropout rate of 0.1.

For the input of the network, we gather the feature extracted
from the past 10 frames, namely nhist = 10. The range of manifold-
aware self-attention is controlled by pgeo = 20. We choose to use
nconn = 2 manifold-aware self-attention heads out of 8 heads. Dur-
ing training time, we split the input geometry into ns = 4 disjoint
subsets in the first 100 epochs for efficiency consideration. We then
stop the splitting (i.e. ns = 1) for the remaining epochs to enable
the network to learn fine details of garments. We train the network
with a batch size of 16.

We use hyper-parameters λsv and λvel to balance our global loss
term. We find that an equal weighting of the singular value loss

Lsv and a higher weighting of the global velocity loss Lvel deliv-
ers optimal results. Thus, we use λsv = 1 and λvel = 3 for all our
experiments.
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fer for triangle meshes”. ACM Transactions on graphics (TOG) 23.3
(2004), 399–405 1.

[TB23] TIWARI, LOKENDER and BHOWMICK, BROJESHWAR. “Gar-
Sim: Particle Based Neural Garment Simulator”. Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision.
2023, 4472–4481 2.

[VSP*17] VASWANI, ASHISH, SHAZEER, NOAM, PARMAR, NIKI, et al.
“Attention is all you need”. Advances in neural information processing
systems 30 (2017) 2.

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.


